Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 256(Pt 2): 128518, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042322

RESUMEN

Chemical modification of guar gum was done by graft copolymerization of monomer hydroxyethyl methacrylate (HEMA) using azobisisobutyronitrile (AIBN) as initiator. Optimal reaction parameters were settled by varying one reaction condition and keeping the other constant. The optimum reaction conditions worked out were solvent system: binary, [H2O] = 15.00 mL, [acetone] = 5.00 mL, [HEMA] = 82.217× 10-2 mol/L, [AIBN] = 3.333 × 10-2 mol/L, reaction time = 3 h, reaction temperature = 60 °C on to 1.00 g guar gum with Pg = 1694.6 and %GE = 68,704.152. Pure guar gum polymer and grafts were analyzed by several physicochemical investigation techniques like FTIR, SEM, XRD, EDX, and swelling studies. Percent swelling of the guar gum polymer and grafts was investigated at pH 2.2, 7.0, 7.4 and 9.4 concerning time. The finest yield of Ps was recorded at pH 9.4 with time 24 h for graft copolymer. Guar gum and grafted samples were explored for the sorption of toxic dye Bismarck brown Y from the aqueous solution with respect to variable contact time, pH, temperature and dye concentration so as to investigate the stimuli responsive sorption behaviour. Graft copolymers showed better results than guar gum with percent dye uptake (Du) of 97.588 % in 24 h contact time, 35 °C temperature, 9.4 pH at 150.00 ppm dye feed concentration as compared to Guar gum which only showed 85.260 % dye uptake at alike dye fed concentration. The kinetic behaviour of the polymeric samples was evaluated by applying many adsorption isotherms and kinetic models. The value of 1/n was between 0 â†’ 1 showing that there was physisorption of the BB dye that took place on the surface of the polymers. Thermodynamics of BB Y adsorption onto hydrogels was investigated concerning the Van't Hoff equation. -∆G° values obtained from the curve proved the spontanity of the process. Within the context of adsorption efficiency, an investigation was conducted to examine the process of sorption of Bismarck brown Y dye from aqueous solutions. The graft copolymers demonstrated remarkable adsorption abilities, achieving a dye uptake (Du) of 97.588 % over a 24-h period at a temperature of 35 °C, pH level of 9.4, and a dye concentration of 150.00 ppm. The raised adsorption capacity was additionally corroborated by the application of several adsorption isotherms and kinetic models, which indicated that physisorption is the prevailing process/mechanism. Additionally, the thermodynamic research, utilising the Van't Hoff equation, validated the spontaneity of the adsorption phenomenon, as evidenced by the presence of a negative ∆G° values. The thermodynamic analysis revealed herein establishes a strong scientific foundation for the effectiveness of adsorbent composed of graft copolymers based on guar gum. The research conclude the efficiency of the guar gum based grafted copolymers for the water remediation as efficient adsorbents. The captured dye can be re-utilised and the hydrogels can be used for the same purpose in number of cycles.


Asunto(s)
Galactanos , Hidrogeles , Mananos , Metacrilatos , Nitrilos , Contaminantes Químicos del Agua , Hidrogeles/química , Gomas de Plantas/química , Colorantes/química , Agua/química , Termodinámica , Polímeros/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Contaminantes Químicos del Agua/química
2.
Sensors (Basel) ; 22(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35591144

RESUMEN

The hydrogel materials are getting attention from the research due to their multidimensional usage in various fields. Chitosan is one of the most important hydrogels used in this regard. In this paper multifunctional binary graft copolymeric matrices of chitosan with monomer AA and various comonomers AAm and AN were prepared by performing free radical graft copolymerization in the presence of an initiator KPS. The binary grafting can be done at five different molar concentrations of binary comonomers at already optimized concentration of AA, KPS and other reaction conditions such as time, temperature, solvent amount, etc. Various optimum reaction conditions were investigated and presented in this work; the backbone as well as binary grafts Ch-graft-poly (AA-cop-AAm) and Ch-graft-poly (AA-cop-AN) were characterized via various physio-chemical techniques of analysis such as SEM analysis, Xray diffraction (XRD), TGA/DTA and FTIR. In the batch experiments, the binary grafts were investigated for the percent swelling with respect to pH (pH of 2.2, 7.0, 7.4 and 9.4) and time (contact time 1 to 24 h). Uploading and controllable in vitro release of the drug DS (anti-inflammatory) was examined with reverence to gastrointestinal pH and time. The binary grafts showed significantly better-controlled drug diffusion than the unmodified backbone. The kinetic study revealed that the diffusion of the drug occurred by the non-Fickian way. In the case of separation technologies, experiments (batch tests) were executed for the toxic bivalent metal ions Fe (II) and Pb (II) sorption from the aqueous media with respect to the parameters such as interaction period, concentration of fed metal ions in solution, pH and temperature. The binary grafted matrices showed superior results compared to chitosan. The kinetics study revealed that the matrices show pseudo-second order adsorption. The graft copolymer Ch-graft-poly (AA-cop-AAm) provided superior results in sustainable drug release as well as metal ion uptake. The study explored the potential of chitosan-based materials in the industry as well in the biomedical field. The results proved these to be excellent materials with a lot of potential as adsorbents.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Adsorción , Quitosano/química , Liberación de Fármacos , Hidrogeles/química , Concentración de Iones de Hidrógeno , Iones/química , Cinética , Metales , Polímeros/química , Contaminantes Químicos del Agua/química
3.
Materials (Basel) ; 15(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35407737

RESUMEN

The hydrogels responding to pH synthesized by graft copolymerization only and then concurrent grafting and crosslinking of monomer N-isopropyl acrylamide (NIPAAM) and binary comonomers acrylamide, acrylic acid and acrylonitrile (AAm, AA and AN) onto chitosan support were explored for the percent upload and release study for anti-inflammatory diclofenac sodium drug (DS), w.r.t. time and pH. Diclofenac sodium DS was seized in polymeric matrices by the equilibration process. The crosslinked-graft copolymers showed the highest percent uptake than graft copolymers (without crosslinker) and chitosan itself. The sustainable release of the loaded drug was studied with respect to time at pH 2.2, 7.0, 7.4 and 9.4. Among graft copolymers (without crosslinking), Chit-g-polymer (NIPAAM-co-AA) and Chit-g-polymer (NIPAAM-co-AN) exhibited worthy results for sustainable drug deliverance, whereas Crosslink-Chit-g-polymer (NIPAAM-co-AA) and Crosslink-Chit-g-polymer (NIPAAM-co-AAm) presented the best results for controlled/sustained release of diclofenac sodium DS with 93.86 % and 96.30 % percent release, respectively, in 6 h contact time. Therefore, the grafted and the crosslinked graft copolymers of the chitosan showed excellent delivery devices for the DS with sustainable/prolonged release in response to pH. Drug release kinetics was studied using Fick's law. The kinetic study revealed that polymeric matrices showed the value of n as n > 1.0, hence drug release took place by non-Fickian diffusion. Hence, the present novel findings showed the multidirectional drug release rate. The morphological changes due to interwoven network structure of the crosslinked are evident by the Scanning electron microscopy (SEM) analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...